Functional demonstration of Na+-K+-2Cl-cotransporter activity in isolated, polarized choroid plexus cells.
نویسندگان
چکیده
The function of the apical Na+-K+-2Cl-cotransporter in mammalian choroid plexus (CP) is uncertain and controversial. To investigate cotransporter function, we developed a novel dissociated rat CP cell preparation in which single, isolated cells maintain normal polarized morphology. Immunofluorescence demonstrated that in isolated cells the Na+-K+-ATPase, Na+-K+-2Cl-cotransporter, and aquaporin 1 water channel remained localized to the brush border, whereas the Cl-/[Formula: see text](anion) exchanger type 2 was confined to the basolateral membrane. We utilized video-enhanced microscopy and cell volume measurement techniques to investigate cotransporter function. Application of 100 μM bumetanide caused CP cells to shrink rapidly. Elevation of extracellular K+ from 3 to 6 or 25 mM caused CP cells to swell 18 and 33%, respectively. Swelling was blocked completely by Na+ removal or by addition of 100 μM bumetanide. Exposure of CP cells to 5 mM BaCl2 induced rapid swelling that was inhibited by 100 μM bumetanide. We conclude that the CP cotransporter is constitutively active and propose that it functions in series with Ba2+-sensitive K+ channels to reabsorb K+ from cerebrospinal fluid to blood.
منابع مشابه
Distribution of sodium transporters and aquaporin-1 in the human choroid plexus.
The choroid plexus epithelium secretes electrolytes and fluid in the brain ventricular lumen at high rates. Several channels and ion carriers have been identified as likely mediators of this transport in rodent choroid plexus. This study aimed to map several of these proteins to the human choroid plexus. Immunoperoxidase-histochemistry was employed to determine the cellular and subcellular loca...
متن کاملDifferential effects of diabetes on rat choroid plexus ion transporter expression.
Though diabetes is a disease with vascular complications, little is known about its effects on the blood-brain barrier or the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB is situated at choroid plexuses located in the lateral, third, and fourth ventricles. Choroid plexuses are the primary site of cerebrospinal fluid (CSF) production and express numerous ion transporters. Previous studie...
متن کاملExpression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rat and rabbit nephron.
Sodium and chloride transport by the macula densa and thick ascending limb of Henle's loop participates importantly in extracellular fluid volume homeostasis, urinary concentration and dilution, control of glomerular filtration, and control of renal hemodynamics. Transepithelial Na and Cl transport across the apical membrane of thick ascending limb (TALH) cells is mediated predominantly by a lo...
متن کاملRapid Publication Expression of the Na-K-2Cl Cotransporter by Macula Densa and Thick Ascending Limb Cells of Rat and Rabbit Nephron
Sodium and chloride transport by the macula densa and thick ascending limb of Henle’s loop participates importantly in extracellular fluid volume homeostasis, urinary concentration and dilution, control of glomerular filtration, and control of renal hemodynamics. Transepithelial Na and Cl transport across the apical membrane of thick ascending limb (TALH) cells is mediated predominantly by a lo...
متن کاملGill Na(+)-K(+)-2Cl(-) cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting.
Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 275 6 شماره
صفحات -
تاریخ انتشار 1998